Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
-
Published:2022-08-03
Issue:15
Volume:22
Page:9915-9947
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Xian PengORCID, Zhang JianglongORCID, O'Neill Norm T., Toth Travis D., Sorenson Blake, Colarco Peter R.ORCID, Kipling ZakORCID, Hyer Edward J.ORCID, Campbell James R.ORCID, Reid Jeffrey S., Ranjbar KeyvanORCID
Abstract
Abstract. We present an Arctic aerosol optical depth (AOD) climatology and trend
analysis for 2003–2019 spring and summertime periods derived from a
combination of multi-agency aerosol reanalyses, remote-sensing retrievals,
and ground observations. This includes the U.S. Navy Aerosol Analysis and
Prediction System ReAnalysis version 1 (NAAPS-RA v1), the NASA Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2),
and the Copernicus Atmosphere Monitoring Service ReAnalysis (CAMSRA).
Spaceborne remote-sensing retrievals of AOD are considered from the
Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle
Imaging SpectroRadiometer (MISR), and the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP). Ground-based data include sun photometer data from
AErosol RObotic NETwork (AERONET) sites and oceanic Maritime Aerosol Network
(MAN) measurements. Aerosol reanalysis AODs and spaceborne retrievals show
consistent climatological spatial patterns and trends for both spring and
summer seasons over the lower Arctic (60–70∘ N). Consistent AOD
trends are also found for the high Arctic (north of 70∘ N) from
reanalyses. The aerosol reanalyses yield more consistent AOD results than
climate models, can be verified well with AERONET, and corroborate complementary
climatological and trend analysis. Speciated AODs are more variable than
total AOD among the three reanalyses and a little more so for March–May (MAM) than for June–August (JJA). Black carbon (BC) AOD in the Arctic comes
predominantly from biomass burning (BB) sources in both MAM and JJA, and BB
overwhelms anthropogenic sources in JJA for the study period. AOD exhibits a multi-year negative MAM trend and a positive JJA trend in
the Arctic during 2003–2019, due to an overall decrease in
sulfate/anthropogenic pollution and a significant JJA increase in BB smoke.
Interannual Arctic AOD variability is significantly large, driven by
fine-mode and, specifically, BB smoke, with both smoke contribution and
interannual variation larger in JJA than in MAM. It is recommended that
climate models should account for BB emissions and BB interannual
variabilities and trends in Arctic climate change studies.
Funder
Canadian Space Agency Office of Naval Research Goddard Earth Sciences
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference172 articles.
1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019. 2. AboEl-Fetouh, Y., O'Neill, N. T., Ranjbar, K., Hesaraki, S., Abboud, I., and
Sobolewski, P. S.: Climatological-scale analysis of intensive and
semi-intensive aerosol parameters derived from AERONET retrievals over the
Arctic, J. Geophys. Res.-Atmos., 125, e2019JD031569,
https://doi.org/10.1029/2019JD031569, 2020. 3. AERONET: AERONET AOD Version 3 Level 2 data, http://aeronet.gsfc.nasa.gov, curator David M. Giles, AERONET [data set], last access: 10 July 2022. 4. AMAP: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality,
and Human Health. Summary for Policy-makers, Arctic Monitoring and
Assessment Programme (AMAP), Tromsø, Norway, 20 pp., 2021. 5. Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J.,
Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M.,
Baltensperger, U., Zieger P., and Schmale, J.: Frequent new particle
formation over the high Arctic pack ice by enhanced iodine emissions, Nat.
Commun., 11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|