Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires
-
Published:2022-08-04
Issue:15
Volume:22
Page:9969-9985
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Heinold Bernd, Baars HolgerORCID, Barja BorisORCID, Christensen MatthewORCID, Kubin Anne, Ohneiser Kevin, Schepanski KerstinORCID, Schutgens NickORCID, Senf FabianORCID, Schrödner Roland, Villanueva DiegoORCID, Tegen InaORCID
Abstract
Abstract. More than 1 Tg smoke aerosol was emitted into the atmosphere by
the exceptional 2019–2020 southeastern Australian wildfires. Triggered by the
extreme fire heat, several deep pyroconvective events carried the smoke
directly into the stratosphere. Once there, smoke aerosol remained airborne
considerably longer than in lower atmospheric layers. The thick plumes
traveled eastward, thereby being distributed across the high and mid-latitudes in the
Southern Hemisphere, enhancing the atmospheric opacity. Due to the increased
atmospheric lifetime of the smoke plume, its radiative effect increased
compared to smoke that remains in lower altitudes. Global models describing
aerosol-climate impacts lack adequate descriptions of the emission height of
aerosols from intense wildfires. Here, we demonstrate, by a combination of
aerosol-climate modeling and lidar observations, the importance of the
representation of those high-altitude fire smoke layers for estimating the
atmospheric energy budget. Through observation-based input into the
simulations, the Australian wildfire emissions by pyroconvection are
explicitly prescribed to the lower stratosphere in different scenarios.
Based on our simulations, the 2019–2020 Australian fires caused a
significant top-of-atmosphere (TOA) hemispheric instantaneous direct radiative
forcing signal that reached a magnitude comparable to the radiative forcing
induced by anthropogenic absorbing aerosol. Up to +0.50 W m−2
instantaneous direct radiative forcing was modeled at TOA,
averaged for the Southern Hemisphere (+0.25 W m−2 globally) from January to March 2020 under all-sky conditions. At the surface, on the other
hand, an instantaneous solar radiative forcing of up to −0.81 W m−2
was found for clear-sky conditions, with the respective estimates depending
on the model configuration and subject to the model uncertainties in the
smoke optical properties. Since extreme wildfires are expected to occur more
frequently in the rapidly changing climate, our findings suggest that
high-altitude wildfire plumes must be adequately considered in climate
projections in order to obtain reasonable estimates of atmospheric energy
budget changes.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference67 articles.
1. Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global emergence of anthropogenic climate change in fire weather indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. 2. Andersson, S., Martinsson, B., Vernier, J.-P., Friberg, J., Brenninkmeijer, C. A. M., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Significant radiative impact of volcanic aerosol in the lowermost stratosphere, Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692, 2015. 3. Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. 4. Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET, Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, 2019. 5. Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.: Dependence of climate forcing and response on the altitude of black carbon aerosols, Clim. Dynam., 38, 897–911, https://doi.org/10.1007/s00382-011-1052-y, 2012.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|