Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar
-
Published:2017-03-23
Issue:2
Volume:11
Page:773-788
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Lewis GabrielORCID, Osterberg Erich, Hawley Robert, Whitmore Brian, Marshall Hans Peter, Box JasonORCID
Abstract
Abstract. The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. An improved understanding of temporal and spatial variability of snow accumulation will reduce uncertainties in GrIS mass balance models and improve projections of Greenland's contribution to sea-level rise, currently estimated at 0.089 ± 0.03 m by 2100. Here we analyze 25 NASA Operation IceBridge accumulation radar flights totaling > 17 700 km from 2013 to 2014 to determine snow accumulation in the GrIS dry snow and percolation zones over the past 100–300 years. IceBridge accumulation rates are calculated and used to validate accumulation rates from three regional climate models. Averaged over all 25 flights, the RMS difference between the models and IceBridge accumulation is between 0.023 ± 0.019 and 0.043 ± 0.029 m w.e. a−1, although each model shows significantly larger differences from IceBridge accumulation on a regional basis. In the southeast region, for example, the Modèle Atmosphérique Régional (MARv3.5.2) overestimates by an average of 20.89 ± 6.75 % across the drainage basin. Our results indicate that these regional differences between model and IceBridge accumulation are large enough to significantly alter GrIS surface mass balance estimates. Empirical orthogonal function analysis suggests that the first two principal components account for 33 and 19 % of the variance, and correlate with the Atlantic Multidecadal Oscillation (AMO) and wintertime North Atlantic Oscillation (NAO), respectively. Regions that disagree strongest with climate models are those in which we have the fewest IceBridge data points, requiring additional in situ measurements to verify model uncertainties.
Funder
Division of Graduate Education Division of Arctic Sciences
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference54 articles.
1. Bales, R. C., Guo, Q., Shen, D., McConnell, J. R., Du, G., Burkhart, J. F., Spikes, V. B., Hanna, E., and Cappelen, J.: Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data, J. Geophys. Res.-Atmos., 114, D06116, https://doi.org/10.1029/2008JD011208, 2009. 2. Banta, J. R. and McConnell, J. R.: Annual accumulation over recent centuries at four sites in central Greenland, J. Geophys. Res.-Atmos., 112, 1–9, https://doi.org/10.1029/2006JD007887, 2007. 3. Box, J. E. and Rinke, A.: Evaluation of Greenland Ice Sheet Surface Climate in the HIRHAM Regional Climate Model Using Automatic Weather Station Data, J. Climate, 16, 1302–1319, https://doi.org/10.1175/1520-0442-16.9.1302, 2003. 4. Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L. S., Stroeve, J. C., Rogers, J. C., Steffen, K., Haran, T., and Wang, S. H.: Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output, J. Climate, 19, 2783–2801, https://doi.org/10.1175/JCLI3738.1, 2006. 5. Box, J. E., Cressie, N., Bromwich, D. H., Jung, J. H., Van Den Broeke, M., Van Angelen, J. H., Forster, R. R., Miège, C., Mosley-Thompson, E., Vinther, B., and Mcconnell, J. R.: Greenland ice sheet mass balance reconstruction, Part I: Net snow accumulation (1600–2009), J. Climate, 26, 3919–3934, https://doi.org/10.1175/JCLI-D-12-00373.1, 2013.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|