Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)

Author:

Tarricone JackORCID,Webb Ryan W.ORCID,Marshall Hans-Peter,Nolin Anne W.,Meyer Franz J.ORCID

Abstract

Abstract. Snow is a critical water resource for the western United States and many regions across the globe. However, our ability to accurately measure and monitor changes in snow mass from satellite remote sensing, specifically its water equivalent, remains a challenge. To confront these challenges, NASA initiated the SnowEx program, a multiyear effort to address knowledge gaps in snow remote sensing. During SnowEx 2020, the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) team acquired an L-band interferometric synthetic aperture radar (InSAR) data time series to evaluate the capabilities and limitations of repeat-pass L-band InSAR for tracking changes in snow water equivalent (SWE). The goal was to develop a more comprehensive understanding of where and when L-band InSAR can provide SWE change estimates, allowing the snow community to leverage the upcoming NASA–ISRO (NASA–Indian Space Research Organization) SAR (NISAR) mission. Our study analyzed three InSAR image pairs from the Jemez Mountains, NM, between 12 and 26 February 2020. We developed a snow-focused multi-sensor method that uses UAVSAR InSAR data synergistically with optical fractional snow-covered area (fSCA) information. Combining these two remote sensing datasets allows for atmospheric correction and delineation of snow-covered pixels within the radar swath. For all InSAR pairs, we converted phase change values to SWE change estimates between the three acquisition dates. We then evaluated InSAR-derived retrievals using a combination of fSCA, snow pits, meteorological station data, in situ snow depth sensors, and ground-penetrating radar (GPR). The results of this study show that repeat-pass L-band InSAR is effective for estimating both snow accumulation and ablation with the proper measurement timing, reference phase, and snowpack conditions.

Funder

National Aeronautics and Space Administration

Bureau of Reclamation

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3