Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
-
Published:2022-03-10
Issue:3
Volume:22
Page:813-829
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Johansson Milla M.ORCID, Björkqvist Jan-VictorORCID, Särkkä JaniORCID, Leijala UlpuORCID, Kahma Kimmo K.ORCID
Abstract
Abstract. Both sea level variations and wind-generated waves affect coastal flooding risks. The correlation of these two phenomena complicates the estimates of their joint effect on the exceedance levels for the continuous water mass. In the northern Baltic Sea the seasonal occurrence of sea ice further influences the situation. We analysed this correlation with 28 years (1992–2019) of sea level data, and 4 years (2016–2019) of wave buoy measurements from a coastal location outside the City of Helsinki, Gulf of Finland in the Baltic Sea. The wave observations were complemented by 28 years of simulations with a parametric wave model. The sea levels and significant wave heights at this location show the strongest positive correlation (τ=0.5) for southwesterly winds, while for northeasterly winds the correlation is negative (−0.3). The results were qualitatively similar when only the open water period was considered, or when the ice season was included either with zero wave heights or hypothetical no-ice wave heights. We calculated the observed probability distribution of the sum of the sea level and the highest individual wave crest from the simultaneous time series. Compared to this, a probability distribution of the sum calculated by assuming that the two variables are independent underestimates the exceedance frequencies of high total water levels. We tested nine different copulas for their ability to account for the mutual dependence between the two variables.
Funder
Ydinjätehuoltorahasto
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference43 articles.
1. Arns, A., Wahl, T., Haigh, I., Jensen, J., and Pattiaratchi, C.: Estimating
extreme water level probabilities: A comparison of the direct methods and
recommendations for best practise, Coast. Eng., 81, 51–66, 2013. a 2. Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection design heights, Scient. Rep., 7, 40171, https://doi.org/10.1038/srep40171, 2017. a 3. Battjes, J. A.: Long-term wave height distributions at seven stations around
the British Isles, Deutsch. Hydrogr. Z., 25, 179–189, https://doi.org/10.1007/BF02312702, 1972. a 4. Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G. P., Hulst, S.,
Pettersson, H., Behrens, A., and Männik, A.: Comparing a 41-year model
hindcast with decades of wave measurements from the Baltic Sea, Ocean Eng., 152, 57–71, https://doi.org/10.1016/J.OCEANENG.2018.01.048, 2018. a 5. Björkqvist, J.-V., Pettersson, H., and Kahma, K. K.: The wave spectrum in archipelagos, Ocean Sci., 15, 1469–1487, https://doi.org/10.5194/os-15-1469-2019, 2019. a, b
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|