The wave spectrum in archipelagos

Author:

Björkqvist Jan-VictorORCID,Pettersson HeidiORCID,Kahma Kimmo K.ORCID

Abstract

Abstract. Sea surface waves are important for marine safety and coastal engineering, but mapping the wave properties at complex shorelines, such as coastal archipelagos, is challenging. The wave spectrum, E(f), contains a majority of the information about the wave field, and its properties have been studied for decades. Nevertheless, any systematic research into the wave spectrum in archipelagos has not been made. In this paper we present wave buoy measurements from 14 locations in the Finnish archipelago. The shape of the wave spectrum showed a systematic transition from a single-peaked spectrum to a spectrum with a wide frequency range having almost constant energy. The exact shape also depended on the wind direction, since the fetch, island, and bottom conditions are not isotropic. The deviation from the traditional spectral form is strong enough to have a measurable effect on the definitions of the significant wave height. The relation between the two definitions in the middle of the archipelago was H1/3=0.881Hs, but the ratio varied with the spectral width (Hs was defined using the variance). At this same location the average value of the single highest wave, Hmax∕Hs, was only 1.58. A wider archipelago spectrum was also associated with lower confidence limits for the significant wave height compared to the open sea (6 % vs. 9 %). The challenges caused by the instability of the peak frequency for an archipelago spectrum are presented, and the mean frequency, weighted with E(f)4, is proposed as a compromise between stability and bias with respect to the peak frequency. The possibility of using the frequency and width parameters of this study as a starting point for a new analytical parameterisation of an archipelago type spectrum is discussed.

Funder

Svenska Kulturfonden

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Speed Inversion for Shallow Water Bathymetry Mapping;IEEE Journal of Oceanic Engineering;2024

2. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets;Estuarine, Coastal and Shelf Science;2023-09

3. Analysis of Location and Wave Characteristics on Capsizing of RoPax Opened-Car-Deck;IOP Conference Series: Earth and Environmental Science;2023-05-01

4. Numerical simulations of wave climate in the Baltic Sea: a review;Oceanologia;2023-01

5. LainePoiss®—A Lightweight and Ice-Resistant Wave Buoy;Journal of Atmospheric and Oceanic Technology;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3