Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland

Author:

Pérez-Guillén CristinaORCID,Techel FrankORCID,Hendrick Martin,Volpi Michele,van Herwijnen Alec,Olevski Tasko,Obozinski Guillaume,Pérez-Cruz Fernando,Schweizer JürgORCID

Abstract

Abstract. Even today, the assessment of avalanche danger is by and large a subjective yet data-based decision-making process. Human experts analyse heterogeneous data volumes, diverse in scale, and conclude on the avalanche scenario based on their experience. Nowadays, modern machine learning methods and the rise in computing power in combination with physical snow cover modelling open up new possibilities for developing decision support tools for operational avalanche forecasting. Therefore, we developed a fully data-driven approach to assess the regional avalanche danger level, the key component in public avalanche forecasts, for dry-snow conditions in the Swiss Alps. Using a large data set of more than 20 years of meteorological data measured by a network of automated weather stations, which are located at the elevation of potential avalanche starting zones, and snow cover simulations driven with these input weather data, we trained two random forest (RF) classifiers. The first classifier (RF 1) was trained relying on the forecast danger levels published in the official Swiss avalanche bulletin. To reduce the uncertainty resulting from using the forecast danger level as target variable, we trained a second classifier (RF 2) that relies on a quality-controlled subset of danger level labels. We optimized the RF classifiers by selecting the best set of input features combining meteorological variables and features extracted from the simulated profiles. The accuracy of the models, i.e. the percentage of correct danger level predictions, ranged between 74 % and 76 % for RF 1 and between 72 % and 78 % for RF 2. We assessed the accuracy of forecasts with nowcast assessments of avalanche danger by well-trained observers. The performance of both models was similar to the agreement rate between forecast and nowcast assessments of the current experience-based Swiss avalanche forecasts (which is estimated to be 76 %). The models performed consistently well throughout the Swiss Alps, thus in different climatic regions, albeit with some regional differences. Our results suggest that the models may well have potential to become a valuable supplementary decision support tool for avalanche forecasters when assessing avalanche hazard.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3