Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda

Author:

Uwihirwe JudithORCID,Riveros Alessia,Wanjala Hellen,Schellekens Jaap,Sperna Weiland Frederiek,Hrachowitz MarkusORCID,Bogaard Thom A.ORCID

Abstract

Abstract. Satellite and hydrological model-based technologies provide estimates of rainfall and soil moisture over larger spatial scales and now cover multiple decades, sufficient to explore their value for the development of landslide early warning systems in data-scarce regions. In this study, we used statistical metrics to compare gauge-based and satellite-based precipitation products and assess their performance in landslide hazard assessment and warning in Rwanda. Similarly, the value of high-resolution satellite and hydrological model-derived soil moisture was compared to in situ soil moisture observations at Rwandan weather station sites. Based on statistical indicators, rainfall data from Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM_IMERG) showed the highest skill in reproducing the main spatiotemporal precipitation patterns at the study sites in Rwanda. Similarly, the satellite- and model-derived soil moisture time series broadly reproduce the most important trends of in situ soil moisture observations. We evaluated two categories of landslide meteorological triggering conditions from IMERG satellite precipitation: first, the maximum rainfall amount during a multi-day rainfall event, and second, the cumulative rainfall over the past few day(s). For each category, the antecedent soil moisture recorded at three levels of soil depth, the top 5 cm by satellite-based technologies as well as the top 50 cm and 2 m by modelling approaches, was included in the statistical models to assess its potential for landslide hazard assessment and warning capabilities. The results reveal the cumulative 3 d rainfall RD3 to be the most effective predictor for landslide triggering. This was indicated not only by its highest discriminatory power to distinguish landslide from no-landslide conditions (AUC ∼ 0.72), but also the resulting true positive alarms (TPRs) of ∼80 %. The modelled antecedent soil moisture in the 50 cm root zone Seroot(t−3) was the most informative hydrological variable for landslide hazard assessment (AUC ∼ 0.74 and TPR 84 %). The hydro-meteorological threshold models that incorporate the Seroot(t−3) and RD3 following the cause–trigger concept in a bilinear framework reveal promising results with improved landslide warning capabilities in terms of reduced rate of false alarms by ∼20 % at the expense of a minor reduction in true alarms by ∼8 %.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3