I–D Threshold Analysis of Rainfall-Triggered Landslides Based on TRMM Precipitation Data in Wudu, China

Author:

Ning Shan1ORCID,Ge Yonggang23ORCID,Bai Shibiao123ORCID,Ma Chicheng1,Sun Yiran1

Affiliation:

1. School of Marine Science and Engineering, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China

2. Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610029, China

3. China-Pakistan Joint Research Center on Earth Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610029, China

Abstract

This study explored the applicability of TRMM, TRMM nonlinear downscaling, and ANUSPLIN (ANU) interpolation of three different types of precipitation data to define regional-scale rainfall-triggered landslide thresholds. The spatial resolution of TRMM precipitation data was downscaled from 0.25° to 500 m by the downscaling model considering the relationship between humidity, NDVI, and numerous topographic factors and precipitation. The rainfall threshold was calculated using the rainfall intensity–duration threshold model. The calculation showed that TRMM downscaled precipitation data have better detection capability for extreme precipitation events than the other two, the TRMM downscaling threshold was better than the ANU interpolation, and the cumulative effective rainfall of TRMM downscaling was preferred as the macroscopic critical rainfall-triggered landslide threshold for the early warning of the Wudu. The predictive performance of the rainfall threshold of 50% was better than the other two (10% and 90%). When the probability of landslide occurrence was 50%, the TRMM downscaled threshold curve was given by I50=21.03×D−1.004. The authors also analyzed the influence of factors such as topography landform and soil type on the rainfall threshold of landslides in the study area. The rainfall intensity of small undulating mountains was higher than that of medium and large undulating mountains, and the rainfall intensity of landslides peaks at high altitude mountains of 3500–5000 m.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Jiangsu Province Key R&D Program (Social Development) Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3