Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories

Author:

Kirschbaum D. B.,Adler R.,Hong Y.,Lerner-Lam A.

Abstract

Abstract. Most landslide hazard assessment algorithms in common use are applied to small regions, where high-resolution, in situ, observables are available. A preliminary global landslide hazard algorithm has been developed to estimate areas of potential landslide occurrence in near real-time by combining a calculation of landslide susceptibility with satellite derived rainfall estimates to forecast areas with increased potential for landslide conditions. This paper presents a stochastic methodology to compare this new, landslide hazard algorithm for rainfall-triggered landslides with a newly available inventory of global landslide events, in order to determine the predictive skill and limitations of such a global estimation technique. Additionally, we test the sensitivity of the global algorithm to its input observables, including precipitation, topography, land cover and soil variables. Our analysis indicates that the current algorithm is limited by issues related to both the surface-based susceptibility map and the temporal resolution of rainfall information, but shows skill in determining general geographic and seasonal distributions of landslides. We find that the global susceptibility model has inadequate performance in certain locations, due to improper weighting of surface observables in the susceptibility map. This suggests that the relative contributions of topographic slope and soil conditions to landslide susceptibility must be considered regionally. The current, initial forecast system, although showing some overall skill, must be improved considerably if it is to be used for hazard warning or detailed studies. Surface and remote sensing observations at higher spatial resolution, together with improved landslide event catalogues, are required if global landslide hazard forecasts are to become an operational reality.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference40 articles.

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3