The global carbon budget 1959–2011
Author:
Le Quéré C.,Andres R. J.,Boden T.,Conway T.,Houghton R. A.,House J. I.,Marland G.,Peters G. P.,van der Werf G.,Ahlström A.,Andrew R. M.,Bopp L.,Canadell J. G.,Ciais P.,Doney S. C.,Enright C.,Friedlingstein P.,Huntingford C.,Jain A. K.,Jourdain C.,Kato E.,Keeling R. F.,Klein Goldewijk K.,Levis S.,Levy P.,Lomas M.,Poulter B.,Raupach M. R.,Schwinger J.,Sitch S.,Stocker B. D.,Viovy N.,Zaehle S.,Zeng N.
Abstract
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All carbon data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2012).
Funder
European Commission
Publisher
Copernicus GmbH
Reference87 articles.
1. Ahlström, A., Miller, P. A., and Smith, B.: Too early to infer a global NPP decline since 2000, Geophys. Res. Lett., 39, L15403, https://doi.org/10.1029/2012GL052336, 2012.\\vspace{-0.5mm} 2. Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P., and Treanton, K.: A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9, 1845–1871, https://doi.org/10.5194/bg-9-1845-2012, 2012.\\vspace{-0.5mm} 3. Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K. M., K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl. Sc., 37, 117–134, 2009.\\vspace{-0.5mm} 4. Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010.\\vspace{-0.5mm} 5. Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of biogeochemical cycles between land, oceans and atmosphere, Frontiers Ecology Environ., 9, 53–60, 2011.\\vspace{-0.5mm}
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|