Projected patterns of land uses in Africa under a warming climate

Author:

Yahaya Ibrahim,Xu Runhong,Zhou Jian,Jiang Shan,Su Buda,Huang Jinlong,Cheng Jing,Dong Zhibo,Jiang Tong

Abstract

AbstractLand-use change is a direct driver of biodiversity loss, projection and future land use change often consider a topical issue in response to climate change. Yet few studies have projected land-use changes over Africa, owing to large uncertainties. We project changes in land-use and land-use transfer under future climate for three specified time periods: 2021–2040, 2041–2060, and 2081–2100, and compares the performance of various scenarios using observational land-use data for the year 2020 and projected land-use under seven Shared Socioeconomic Pathways Scenarios (SSP): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5 from 2015 to 2100 in Africa. The observational land-use types for the year 2020 depict a change and show linear relationship between observational and simulated land-use with a strong correlation of 0.89 (P < 0.01) over Africa. Relative to the reference period (1995–2014), for (2021–2040), (2041–2060), (2081–2100), barren land and forest land are projected to decrease by an average of (6%, 11%, 16%), (9%, 19%, 38%) respectively, while, crop land, grassland and urban land area are projected to increase by (36%, 58%, and 105%), (4%, 7% and 11%), and (139%, 275% and 450%) respectively. Results show a substantial variations of land use transfer between scenarios with major from barren land to crop land, for the whole future period (2015–2100). Although SSP4-3.4 project the least transfer. Population and GDP show a relationship with cropland and barren land. The greatest conversion of barren land to crop land could endanger biodiversity and have negative effects on how well the African continent's ecosystem’s function.

Funder

This study was supported by the International Cooperation Program between the National Science Foundation of China (NSFC) and the United Nations Environment Program

The Cooperation Project of Cooperation Group (GZ 1486) in the Chinese and German Center of the Research Promotion, NSFC/DFG

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3