Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey

Author:

Wang XinORCID,Pu Wei,Ren Yong,Zhang Xuelei,Zhang Xueying,Shi Jinsen,Jin HongchunORCID,Dai Mingkai,Chen Quanliang

Abstract

Abstract. A snow survey was carried out to collect 13 surface snow samples (10 for fresh snow, and 3 for aged snow) and 79 subsurface snow samples in seasonal snow at 13 sites across northeastern China in January 2014. A spectrophotometer combined with chemical analysis was used to quantify snow particulate absorption by insoluble light-absorbing particles (ILAPs, e.g., black carbon, BC; mineral dust, MD; and organic carbon, OC) in snow. Snow albedo was measured using a field spectroradiometer. A new radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS) was then developed to simulate the spectral albedo of snow based on the asymptotic radiative transfer theory. A comparison between SAMDS and an existing model – the Snow, Ice, and Aerosol Radiation (SNICAR) – indicates good agreements in the model-simulated spectral albedos of pure snow. However, the SNICAR model values tended to be slightly lower than those of SAMDS when BC and MD were considered. Given the measured BC, MD, and OC mixing ratios of 100–5000, 2000–6000, and 1000–30 000 ng g−1, respectively, in surface snow across northeastern China, the SAMDS model produced a snow albedo in the range of 0.95–0.75 for fresh snow at 550 nm, with a snow grain optical effective radius (Reff) of 100 µm. The snow albedo reduction due to spherical snow grains assumed to be aged snow is larger than fresh snow such as fractal snow grains and hexagonal plate or column snow grains associated with the increased BC in snow. For typical BC mixing ratios of 100 ng g−1 in remote areas and 3000 ng g−1 in heavy industrial areas across northern China, the snow albedo for internal mixing of BC and snow is lower by 0.005 and 0.036 than that of external mixing for hexagonal plate or column snow grains with Reff of 100 µm. These results also show that the simulated snow albedos by both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios but tend to be higher than surface observations at high ILAP mixing ratios.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3