The Spatio-Temporal Variability in the Radiative Forcing of Light-Absorbing Particles in Snow of 2003–2018 over the Northern Hemisphere from MODIS

Author:

Cui Jiecan12ORCID,Niu Xiaoying1,Chen Yang1ORCID,Xing Yuxuan1ORCID,Yan Shirui1,Zhao Jin3,Chen Lijun2,Xu Shuaixi2,Wu Dongyou1ORCID,Shi Tenglong1,Wang Xin14ORCID,Pu Wei1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

2. Zhejiang Development & Planning Institute, Hangzhou 310030, China

3. China Xi’an Satellite Control Center, Xi’an 710000, China

4. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

Abstract

Light-absorbing particles (LAPs) deposited on snow can significantly reduce surface albedo and contribute to positive radiative forcing. This study firstly estimated and attributed the spatio-temporal variability in the radiative forcing (RF) of LAPs in snow over the northern hemisphere during the snow-covered period 2003–2018 by employing Moderate Resolution Imaging Spectroradiometer (MODIS) data, coupled with snow and atmospheric radiative transfer modelling. In general, the RF for the northern hemisphere shows a large spatial variability over the whole snow-covered areas and periods, with the highest value (12.7 W m−2) in northeastern China (NEC) and the lowest (1.9 W m−2) in Greenland (GRL). The concentration of LAPs in snow is the dominant contributor to spatial variability in RF in spring (~73%) while the joint spatial contributions of snow water equivalent (SWE) and solar irradiance (SI) are the most important (>50%) in winter. The average northern hemisphere RF gradually increases from 2.1 W m−2 in December to 4.1 W m−2 in May and the high-value area shifts gradually northwards from mid-altitude to high-latitude over the same period, which is primarily due to the seasonal variability of SI (~58%). More interestingly, our data reveal a significant decrease in RF over high-latitude Eurasia (HEUA) of −0.04 W m−2 a−1 and northeastern China (NEC) of −0.14 W m−2 a−1 from 2003 to 2018. By employing a sensitivity test, we find the concurrent decline in the concentration of LAPs in snow accounted for the primary responsibility for the decrease in RF over these two areas, which is further confirmed by in situ observations.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3