Phenomenology of high-ozone episodes in NE Spain

Author:

Querol Xavier,Gangoiti GotzonORCID,Mantilla Enrique,Alastuey AndrésORCID,Minguillón Maria CruzORCID,Amato Fulvio,Reche Cristina,Viana MarORCID,Moreno TeresaORCID,Karanasiou Angeliki,Rivas Ioar,Pérez Noemí,Ripoll Anna,Brines Mariola,Ealo Marina,Pandolfi Marco,Lee Hong-Ku,Eun Hee-Ram,Park Yong-Hee,Escudero MiguelORCID,Beddows David,Harrison Roy M.ORCID,Bertrand Amelie,Marchand NicolasORCID,Lyasota Andrei,Codina Bernat,Olid Miriam,Udina MireiaORCID,Jiménez-Esteve Bernat,Soler María R.,Alonso Lucio,Millán Millán,Ahn Kang-Ho

Abstract

Abstract. Ground-level and vertical measurements (performed using tethered and non-tethered balloons), coupled with modelling, of ozone (O3), other gaseous pollutants (NO, NO2, CO, SO2) and aerosols were carried out in the plains (Vic Plain) and valleys of the northern region of the Barcelona metropolitan area (BMA) in July 2015, an area typically recording the highest O3 episodes in Spain. Our results suggest that these very high O3 episodes were originated by three main contributions: (i) the surface fumigation from high O3 reservoir layers located at 1500–3000 m a.g.l. (according to modelling and non-tethered balloon measurements), and originated during the previous day(s) injections of polluted air masses at high altitude; (ii) local/regional photochemical production and transport (at lower heights) from the BMA and the surrounding coastal settlements, into the inland valleys; and (iii) external (to the study area) contributions of both O3 and precursors. These processes gave rise to maximal O3 levels in the inland plains and valleys northwards from the BMA when compared to the higher mountain sites. Thus, a maximum O3 concentration was observed within the lower tropospheric layer, characterised by an upward increase of O3 and black carbon (BC) up to around 100–200 m a.g.l. (reaching up to 300 µg m−3 of O3 as a 10 s average), followed by a decrease of both pollutants at higher altitudes, where BC and O3 concentrations alternate in layers with parallel variations, probably as a consequence of the atmospheric transport from the BMA and the return flows (to the sea) of strata injected at certain heights the previous day(s). At the highest altitudes reached in this study with the tethered balloons (900–1000 m a.g.l.) during the campaign, BC and O3 were often anti-correlated or unrelated, possibly due to a prevailing regional or even hemispheric contribution of O3 at those altitudes. In the central hours of the days a homogeneous O3 distribution was evidenced for the lowest 1 km of the atmosphere, although probably important variations could be expected at higher levels, where the high O3 return strata are injected according to the modelling results and non-tethered balloon data. Relatively low concentrations of ultrafine particles (UFPs) were found during the study, and nucleation episodes were only detected in the boundary layer. Two types of O3 episodes were identified: type A with major exceedances of the O3 information threshold (180 µg m−3 on an hourly basis) caused by a clear daily concatenation of local/regional production with accumulation (at upper levels), fumigation and direct transport from the BMA (closed circulation); and type B with regional O3 production without major recirculation (or fumigation) of the polluted BMA/regional air masses (open circulation), and relatively lower O3 levels, but still exceeding the 8 h averaged health target. To implement potential O3 control and abatement strategies two major key tasks are proposed: (i) meteorological forecasting, from June to August, to predict recirculation episodes so that NOx and VOC abatement measures can be applied before these episodes start; (ii) sensitivity analysis with high-resolution modelling to evaluate the effectiveness of these potential abatement measures of precursors for O3 reduction.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference57 articles.

1. Ajuntament de Barcelona: Annual Statistics of the Barcelona City, available at: http://www.bcn.cat/estadistica/catala/dades/anuari/cap15/index.htm (last access: 7 September 2016), 2015.

2. Barros, N., Borrego, C., Toll, I., Soriano, C., Jiménez, P., and Baldasano, J. M.: Urban Photochemical Pollution in the Iberian Peninsula: Lisbon and Barcelona Airsheds, J. Air Waste Manage., 53, 347–359, 2003.

3. Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC: Atmospheric Modelling Division, 27711, 1999.

4. Carslaw, D. C.: The openair manual – open-source tools for analysing air pollution data, Manual for version 0.7-0, King's College, London, 2012.

5. Carslaw, D. C., Murrells, T. P., Andersson, J., and Keenan, M.: Have vehicle emissions of primary NO2 peaked?, Faraday Discuss., 189, 439–454, 2016.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3