Have vehicle emissions of primary NO2 peaked?

Author:

Carslaw David C.12345,Murrells Tim P.123,Andersson Jon6783,Keenan Matthew6783

Affiliation:

1. Ricardo Energy & Environment

2. Harwell

3. UK

4. Wolfson Atmospheric Chemistry Laboratories

5. Department of Chemistry

6. Ricardo Ltd

7. Shoreham Technical Centre

8. West Sussex BN43 5FG

Abstract

Reducing ambient concentrations of nitrogen dioxide (NO2) remains a key challenge across many European urban areas, particularly close to roads. This challenge mostly relates to the lack of reduction in emissions of oxides of nitrogen (NOx) from diesel road vehicles relative to the reductions expected through increasingly stringent vehicle emissions legislation. However, a key component of near-road concentrations of NO2 derives from directly emitted (primary) NO2 from diesel vehicles. It is well-established that the proportion of NO2 (i.e. the NO2/NOx ratio) in vehicle exhaust has increased over the past decade as a result of vehicle after-treatment technologies that oxidise carbon monoxide and hydrocarbons and generate NO2 to aid the emissions control of diesel particulate. In this work we bring together an analysis of ambient NOx and NO2 measurements with comprehensive vehicle emission remote sensing data obtained in London to better understand recent trends in the NO2/NOx ratio from road vehicles. We show that there is evidence that NO2 concentrations have decreased since around 2010 despite less evidence of a reduction in total NOx. The decrease is shown to be driven by relatively large reductions in the amount of NO2 directly emitted by vehicles; from around 25 vol% in 2010 to 15 vol% in 2014 in inner London, for example. The analysis of NOx and NO2 vehicle emission remote sensing data shows that these reductions have been mostly driven by reduced NO2/NOx emission ratios from heavy duty vehicles and buses rather than light duty vehicles. However, there is also evidence from the analysis of Euro 4 and 5 diesel passenger cars that as vehicles age the NO2/NOx ratio decreases. For example the NO2/NOx ratio decreased from 29.5 ± 2.0% in Euro 5 diesel cars up to one year old to 22.7 ± 2.5% for four-year old vehicles. At some roadside locations the reductions in primary NO2 have had a large effect on reducing both the annual mean and number of hourly exceedances of the European Limit Values of NO2.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Reference30 articles.

1. EEA, Air quality in Europe – 2014 report. European Environment Agency, No 5/2014, ISSN 1977-8449, 2014

2. EC, Regulation (EC) No 715/2007 of the European Parliament and the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6), European Commission, Brussels, Belgium., 2007

3. EC, Regulation (EC) No 595/2009 of the European Parliament and the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI), European Commission, Brussels, Belgium., 2009

4. New Directions: Should road vehicle emissions legislation consider primary NO2?

5. Evidence of an increasing NO/NO emissions ratio from road traffic emissions

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3