Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations

Author:

Hafner Elisabeth D.ORCID,Barton Patrick,Daudt Rodrigo Caye,Wegner Jan Dirk,Schindler Konrad,Bühler YvesORCID

Abstract

Abstract. Spatially dense and continuous information on avalanche occurrences is crucial for numerous safety-related applications such as avalanche warning, hazard zoning, hazard mitigation measures, forestry, risk management and numerical simulations. This information is today still collected in a non-systematic way by observers in the field. Current research has explored the application of remote sensing technology to fill this information gap by providing spatially continuous information on avalanche occurrences over large regions. Previous investigations have confirmed the high potential of avalanche mapping from remotely sensed imagery to complement existing databases. Currently, the bottleneck for fast data provision from optical data is the time-consuming manual mapping. In our study we deploy a slightly adapted DeepLabV3+, a state-of-the-art deep learning model, to automatically identify and map avalanches in SPOT 6/7 imagery from 24 January 2018 and 16 January 2019. We relied on 24 778 manually annotated avalanche polygons split into geographically disjointed regions for training, validating and testing. Additionally, we investigate generalization ability by testing our best model configuration on SPOT 6/7 data from 6 January 2018 and comparing it to avalanches we manually annotated for that purpose. To assess the quality of the model results, we investigate the probability of detection (POD), the positive predictive value (PPV) and the F1 score. Additionally, we assessed the reproducibility of manually annotated avalanches in a small subset of our data. We achieved an average POD of 0.610, PPV of 0.668 and an F1 score of 0.625 in our test areas and found an F1 score in the same range for avalanche outlines annotated by different experts. Our model and approach are an important step towards a fast and comprehensive documentation of avalanche periods from optical satellite imagery in the future, complementing existing avalanche databases. This will have a large impact on safety-related applications, making mountain regions safer.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3