Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery

Author:

Kneib MarinORCID,Dehecq AmauryORCID,Brun FannyORCID,Karbou Fatima,Charrier LauraneORCID,Leinss SilvanORCID,Wagnon Patrick,Maussion FabienORCID

Abstract

Abstract. Avalanches are important contributors to the mass balance of glaciers located in mountain ranges with steep topographies. Avalanches result in localized over-accumulation that is seldom accounted for in glacier models due to the difficulty of quantifying this contribution, let alone the occurrence of avalanches in these remote regions. Here, we developed an approach to semi-automatically map avalanche deposits over long time periods and at scales of multiple glaciers, utilizing imagery from Sentinel-1 synthetic aperture radar (SAR). This approach performs particularly well for scenes acquired in winter and in the morning but can also be used to identify avalanche events throughout the year. We applied this method to map 16 302 avalanche deposits over a period of 5 years at a 6 to 12 d interval over the Mt Blanc massif (European Alps), the Everest (central Himalaya) region, and the Hispar (Karakoram) region. These three survey areas are all characterized by steep mountain slopes but also present contrasting climatic characteristics. Our results enable the identification of avalanche hotspots on these glaciers and allow us to quantify the avalanche activity and its spatio-temporal variability across the three regions. The avalanche deposits are preferentially located at lower elevations relative to the hypsometry of the glacierized catchments and are also constrained to a smaller elevation range at the Asian sites, where they have a limited influence on their extensive debris-covered tongues. Avalanche events coincide with solid precipitation events, which explains the high avalanche activity in winter in the Mt Blanc massif and during the monsoon in the Everest region. However, there is also a time lag of 1–2 months, visible especially in the Everest region, between the precipitation and avalanche events, indicative of some snow retention on the mountain headwalls. This study therefore provides critical insights into these mass redistribution processes and tools to account for their influence on glacier mass balance.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3