Using freezing spectra characteristics to identify ice-nucleating particle populations during the winter in the Alps

Author:

Creamean Jessie M.ORCID,Mignani ClaudiaORCID,Bukowiecki NicolasORCID,Conen FranzORCID

Abstract

Abstract. One of the least understood cloud processes is modulation of their microphysics by aerosols, specifically of cloud ice by ice-nucleating particles (INPs). To investigate INP impacts on cloud ice and subsequent precipitation formation, measurements in cloud environments are necessary but difficult given the logistical challenges associated with airborne measurements and separating interstitial aerosol from cloud residues. Additionally, determining the sources of INPs is important given the dependency of glaciation temperatures on the mineral or biological components and diversity of such INP populations. Here, we present results from a comparison of INP spectral characteristics in air, cloud rime, and fresh fallen snow at the High Altitude Research Station, Jungfraujoch. The goal of the study was twofold: (1) to assess variability in wintertime INP populations found in cloud based on wind and air mass direction during snowfall and (2) to evaluate possible INP sources between different sample types using a combination of cumulative INP (K(T)) and differential INP (k(T)) spectra. INP freezing temperatures and concentrations were consistently higher on average from the southeast as compared to the northwest for rime, snow, and especially aerosol samples, which is likely a result of air mass influence from predominantly boundary layer terrestrial and marine sources in southern Europe, the Mediterranean, and North Africa. For all three sample types combined, average onset freezing temperatures were −8.0 and −11.3 ∘C for southeasterly and northwesterly days, respectively, while K(T) were 3 to 20 times higher when winds arrived from the southeast. Southeasterly aerosol samples typically had a clear mode in the warm-temperature regime (i.e., ≥-15 ∘C) in the k(T) spectra – indicating a putative influence from biological sources – while the presence of a warm mode in the rime and snow varied. Evaluating K(T) concert with k(T) spectra exhibited variable modality and shape – depending on the types of INPs present – and may serve as a useful method for comparing different sampled substances and assessing the possible relative contributions of mixed mineral and biological versus only biological INP sample populations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3