The 2015 and 2016 wintertime air pollution in China: SO<sub>2</sub> emission changes derived from a WRF-Chem/EnKF coupled data assimilation system

Author:

Chen DanORCID,Liu Zhiquan,Ban Junmei,Chen Min

Abstract

Abstract. Ambient pollutants and emissions in China have changed significantly in recent years due to strict control strategies implemented by the government. It is of great interest to evaluate the reduction of emissions and the air quality response using a data assimilation (DA) approach. In this study, we updated the WRF-Chem/EnKF (Weather Research and Forecasting – WRF, model coupled with the chemistry/ensemble Kalman filter – Chem/EnKF) system to directly analyze SO2 emissions instead of using emission scaling factors, as in our previous study. Our purpose is to investigate whether the WRF-Chem/EnKF system is capable of detecting the emission deficiencies in the bottom-up emission inventory (2010-MEIC, Multi-resolution Emission Inventory for China), dynamically updating the spatial–temporal emission changes (2010 to 2015/2016) and, most importantly, locating the “new” (emerging) emission sources that are not considered in the a priori emission inventory. The 2010 January MEIC emission inventory was used as the a priori inventory (to generate background emission fields). The 2015 and 2016 January emissions were obtained by assimilating the hourly surface SO2 concentration observations for January 2015 and 2016. The SO2 emission changes for northern, western, and southern China from 2010 to 2015 and from 2015 to 2016 (for the month of January) from the EnSRF (ensemble square root filter) approach were investigated, and the emission control strategies during the corresponding period were discussed. The January 2010–2015 differences showed inhomogeneous change patterns in different regions, including (1) significant emission reductions in southern China; (2) significant emission reductions in larger cities with a wide increase in the surrounding suburban and rural regions in northern China, which may indicate missing raw coal combustion for winter heating that was not taken into account in the a priori emission inventory; and (3) significantly large emission increases in western China due to the energy expansion strategy. The January 2015–2016 differences showed wide emission reductions from 2015 to 2016, indicating stricter control strategies having been fully executed nationwide. These derived emission changes coincided with the period of the energy development national strategy in northwestern China and the regulations for the reduction of SO2 emissions, indicating that the updated DA system was possibly capable of detecting emission deficiencies, dynamically updating the spatial–temporal emission changes (2010 to 2015/2016), and locating newly added sources. Forecast experiments using the a priori and updated emissions were conducted. Comparisons showed improvements from using updated emissions. The improvements in southern China were much larger than those in northern and western China. For the Sichuan Basin, central China, the Yangtze River Delta, and the Pearl River Delta, the BIAS (bias, equal to the difference between the modeled value and the observational value, representing the overall model tendency) decreased by 61.8 %–78.2 % (for different regions), the RMSE decreased by 27.9 %–52.2 %, and CORR values (correlation coefficient, equal to the linear relationship between the modeled values and the observational values) increased by 12.5 %–47.1 %. The limitation of the study is that the analyzed emissions are still model-dependent, as the ensembles are conducted using the WRF-Chem model; therefore, the performances of the ensembles are model-dependent. Our study indicated that the WRF-Chem/EnSRF system is not only capable of improving the emissions and forecasts in the model but can also evaluate realistic emission changes. Thus, it is possible to apply the system for the evaluation of emission changes in the future.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference55 articles.

1. The Central Government of the People's Republic of China: The development of the western region in China: the twelfth five-year plan, Beijing, National Development and Reform Commission, 2012.

2. The Central Government of the People's Republic of China: Strategic action Plan for Energy development (2014–2020), Beijing, State Council of the People's Republic of China, 2014.

3. Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016.

4. Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology, Atmos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-19-7409-2019, 2019.

5. Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3