Retrospective analysis of 2015–2017 wintertime PM<sub>2.5</sub> in China: response to emission regulations and the role of meteorology

Author:

Chen DanORCID,Liu Zhiquan,Ban Junmei,Zhao Pusheng,Chen Min

Abstract

Abstract. To better characterize anthropogenic emission-relevant aerosol species, the Gridpoint Statistical Interpolation (GSI) and Weather Research and Forecasting with Chemistry (WRF/Chem) data assimilation system was updated from the GOCART aerosol scheme to the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) 4-bin (MOSAIC-4BIN) aerosol scheme. Three years (2015–2017) of wintertime (January) surface PM2.5 (fine particulate matter with an aerodynamic diameter smaller than 2.5 µm) observations from more than 1600 sites were assimilated hourly using the updated three-dimensional variational (3DVAR) system. In the control experiment (without assimilation) using Multi-resolution Emission Inventory for China 2010 (MEIC_2010) emissions, the modeled January averaged PM2.5 concentrations were severely overestimated in the Sichuan Basin, central China, the Yangtze River Delta and the Pearl River Delta by 98–134, 46–101, 32–59 and 19–60 µg m−3, respectively, indicating that the emissions for 2010 are not appropriate for 2015–2017, as strict emission control strategies were implemented in recent years. Meanwhile, underestimations of 11–12, 53–96 and 22–40 µg m−3 were observed in northeastern China, Xinjiang and the Energy Golden Triangle, respectively. The assimilation experiment significantly reduced both high and low biases to within ±5 µg m−3. The observations and the reanalysis data from the assimilation experiment were used to investigate the year-to-year changes and the driving factors. The role of emissions was obtained by subtracting the meteorological impacts (by control experiments) from the total combined differences (by assimilation experiments). The results show a reduction in PM2.5 of approximately 15 µg m−3 for the month of January from 2015 to 2016 in the North China Plain (NCP), but meteorology played the dominant role (contributing a reduction of approximately 12 µg m−3). The change (for January) from 2016 to 2017 in NCP was different; meteorology caused an increase in PM2.5 of approximately 23 µg m−3, while emission control measures caused a decrease of 8 µg m−3, and the combined effects still showed a PM2.5 increase for that region. The analysis confirmed that emission control strategies were indeed implemented and emissions were reduced in both years. Using a data assimilation approach, this study helps identify the reasons why emission control strategies may or may not have an immediately visible impact. There are still large uncertainties in this approach, especially the inaccurate emission inputs, and neglecting aerosol–meteorology feedbacks in the model can generate large uncertainties in the analysis as well.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3