Constrained two-stream algorithm for calculating aerosol light absorption coefficient from the Particle Soot Absorption Photometer

Author:

Müller T.,Virkkula A.ORCID,Ogren J. A.ORCID

Abstract

Abstract. We present a new correction scheme for filter-based absorption photometers based on a constrained two-stream (CTS) radiative transfer model and experimental calibrations. The two-stream model was initialized using experimentally accessible optical parameters of the filter. Experimental calibrations were taken from the literature and from dedicated experiments for the present manuscript. Uncertainties in the model and calibration experiments are discussed and uncertainties for retrieval of absorption coefficients are derived. For single-scattering albedos lower than 0.8, the new CTS method and also other correction schemes suffer from the uncertainty in calibration experiments, with an uncertainty of about 20% in the absorption coefficient. For high single-scattering albedos, the CTS correction significantly reduces errors. At a single-scattering albedo of about 0.98 the error can be reduced to 30%, whereas errors using the Bond correction (Bond et al., 1999) are up to 100%. The correction scheme was tested using data from an independent experiment. The tests confirm the modeled performance of the correction scheme when comparing the CTS method to other established correction methods.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3