Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation

Author:

Mynard AngelaORCID,Kent Joss,Smith Eleanor R.,Wilson Andy,Wivell Kirsty,Nelson Noel,Hort Matthew,Bowles James,Tiddeman David,Langridge Justin M.,Drummond Benjamin,Abel Steven J.ORCID

Abstract

Abstract. The ability of regional air quality models to skilfully represent pollutant distributions throughout the atmospheric column is important to enabling their skilful prediction at the surface. This provides a requirement for model evaluation at elevated altitudes, though observation datasets available for this purpose are limited. This is particularly true of those offering sampling over extended time periods. To address this requirement and support evaluation of regional air quality models such as the UK Met Offices Air Quality in the Unified Model (AQUM), a long-term, quality-assured dataset of the three-dimensional distribution of key pollutants was collected over the southern United Kingdom from July 2019 to April 2022. Measurements were collected using the Met Office Atmospheric Survey Aircraft (MOASA), a Cessna 421 instrumented for this project to measure gaseous nitrogen dioxide, ozone, sulfur dioxide and fine-mode (PM2.5) aerosol. This paper introduces the MOASA measurement platform, flight strategies and instrumentation and is not intended to be an in-depth diagnostic analysis but rather a comprehensive technical reference for future users of these data. The MOASA air quality dataset includes 63 flight sorties (totalling over 150 h of sampling), the data from which are openly available for use. To illustrate potential uses of these upper-air observations for regional-scale model evaluation, example case studies are presented, which include analyses of the spatial scales of measured pollutant variability, a comparison of airborne to ground-based observations over Greater London and initial work to evaluate performance of the AQUM regional air quality model. These case studies show that, for observations of relative humidity, nitrogen dioxide and particle counts, natural pollutant variability is well observed by the aircraft, whereas SO2 variability is limited by instrument precision. Good agreement is seen between observations aloft and those on the ground, particularly for PM2.5. Analysis of odd oxygen suggests titration of ozone is a dominant chemical process throughout the column for the data analysed, although a slight enhancement of ozone aloft is seen. Finally, a preliminary evaluation of AQUM performance for two case studies suggests a large positive model bias for ozone aloft, coincident with a negative model bias for NO2 aloft. In one case, there is evidence that an underprediction in the modelled boundary layer height contributes to the observed biases at elevated altitudes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference66 articles.

1. Air Quality Expert Group: Fine Particulate Matter (PM2.5) in the United Kingdom, Department for Environment Food and Rural Affairs (DEFRA)​​​​​​​, https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf (last access: 15 February 2021), 2012.

2. Air Quality Expert Group: Estimation of changes in air pollution emissions, concentrations and exposure during the COVID-19 outbreak in the UK, UK Air Inf. Resour., 1–57, https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2007010844_Estimation_of_Changes_in_Air_Pollution_During_COVID-19_outbreak_in_the_UK.pdf (last access: 6 January 2021), 2020.

3. Bates, K. H. and Jacob, D. J.: An Expanded Definition of the Odd Oxygen Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and Stratospheric In fl uence Geophysical Research Letters, Geophys. Res. Lett., 47, e2019GL084486, https://doi.org/10.1029/2019GL084486, 2019.​​​​​​​

4. Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P.: Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.

5. Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3