Author:
Waara M.,Nilsson H.,Stenberg G.,André M.,Gunell H.,Rème H.
Abstract
Abstract. We present a case study of significant heating (up to 8 keV) perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE) above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude). This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献