O<sup>+</sup> and H<sup>+</sup> ion heat fluxes at high altitudes and high latitudes

Author:

Barghouthi I. A.,Nilsson H.ORCID,Ghithan S. H.

Abstract

Abstract. Higher order moments, e.g., perpendicular and parallel heat fluxes, are related to non-Maxwellian plasma distributions. Such distributions are common when the plasma environment is not collision dominated. In the polar wind and auroral regions, the ion outflow is collisionless at altitudes above about 1.2 RE geocentric. In these regions wave–particle interaction is the primary acceleration mechanism of outflowing ionospheric origin ions. We present the altitude profiles of actual and "thermalized" heat fluxes for major ion species in the collisionless region by using the Barghouthi model. By comparing the actual and "thermalized" heat fluxes, we can see whether the heat flux corresponds to a small perturbation of an approximately bi-Maxwellian distribution (actual heat flux is small compared to "thermalized" heat flux), or whether it represents a significant deviation (actual heat flux equal or larger than "thermalized" heat flux). The model takes into account ion heating due to wave–particle interactions as well as the effects of gravity, ambipolar electric field, and divergence of geomagnetic field lines. In the discussion of the ion heat fluxes, we find that (1) the role of the ions located in the energetic tail of the ion velocity distribution function is very significant and has to be taken into consideration when modeling the ion heat flux at high altitudes and high latitudes; (2) at times the parallel and perpendicular heat fluxes have different signs at the same altitude. This indicates that the parallel and perpendicular parts of the ion energy are being transported in opposite directions. This behavior is the result of many competing processes; (3) we identify altitude regions where the actual heat flux is small as compared to the "thermalized" heat flux. In such regions we expect transport equation solutions based on perturbations of bi-Maxwellian distributions to be applicable. This is true for large altitude intervals for protons, but only the lowest altitudes for oxygen.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3