Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal

Author:

Mesta CarlosORCID,Cremen GemmaORCID,Galasso CarmineORCID

Abstract

Abstract. Flood risk is expected to increase in many regions worldwide due to rapid urbanization and climate change if adequate risk-mitigation (or climate-change-adaptation) measures are not implemented. However, the exact benefits of these measures remain unknown or inadequately quantified for potential future events in some flood-prone areas such as Kathmandu Valley, Nepal, which this paper addresses. This study examines the present (2021) and future (2031) flood risk in Kathmandu Valley, considering two flood occurrence cases (with 100-year and 1000-year mean return periods) and using four residential exposure inventories representing the current urban system (Scenario A) or near-future development trajectories (Scenarios B, C, D) that Kathmandu Valley could experience. The findings reveal substantial mean absolute financial losses (EUR 473 million and 775 million in repair and reconstruction costs) and mean loss ratios (2.8 % and 4.5 %) for the respective flood occurrence cases in current times if the building stock's quality is assumed to have remained the same as in 2011 (Scenario A). Under a “no change” pathway for 2031 (Scenario B), where the vulnerability of the expanding building stock remains the same as in 2011, mean absolute financial losses would increase by 14 %–16 % over those of Scenario A. However, a minimum (0.20 m) elevation of existing residential buildings located in the floodplains and the implementation of flood-hazard-informed land-use planning for 2031 (Scenario C) could decrease the mean absolute financial losses of the flooding occurrences by 9 %–13 % and the corresponding mean loss ratios by 23 %–27 %, relative to those of Scenario A. Moreover, an additional improvement of the building stock's vulnerability that accounts for the multi-hazard-prone nature of the valley (by means of structural retrofitting and building code enforcement) for 2031 (Scenario D) could further decrease the mean loss ratios by 24 %–28 % relative to those of Scenario A. The largest mean loss ratios computed in the four scenarios are consistently associated with populations of the highest incomes, which are largely located in the floodplains. In contrast, the most significant benefits of risk mitigation (i.e., largest reduction in mean absolute financial losses or mean loss ratios between scenarios) are experienced by populations of the lowest incomes. This paper's main findings can inform decision makers about the benefits of investing in forward-looking multi-hazard risk-mitigation efforts.

Funder

UK Research and Innovation

Centro Europeo di Formazione e Ricerca in Ingegneria Sismica

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3