Multi-station automatic classification of seismic signatures from the Lascar volcano database

Author:

Salazar Pablo,Yupanqui FranzORCID,Meneses Claudio,Layana Susana,Yáñez Gonzalo

Abstract

Abstract. This study was aimed to build a multi-station automatic classification system for volcanic seismic signatures such as hybrid, long period, tremor, tectonic, and volcano–tectonic events. This system was based on a probabilistic model made using transfer learning, which has, as the main tool, a pre-trained convolutional network named AlexNet. We designed five experiments using different datasets with data that were real, synthetic, two different combinations of these (combined 1 and combined 2), and a balanced subset without synthetic data. The experiment presented the highest scores when a process of data augmentation was introduced into processing sequence. Thus, the lack of real data in some classes (imbalance) dramatically affected the quality of the results, because the learning step (training) was overfitted to the more numerous classes. To test the model stability with variable inputs, we implemented a k-fold cross-validation procedure. Under this approach, the results reached high predictive performance, considering that only the percentage of recognition of the tectonic events (TC) class was partially affected. The results obtained showed the performance of the probabilistic model, reaching high scores over different test datasets. The most valuable benefit of using this technique was that the use of volcano seismic signals from multiple stations provided a more generalizable model which, in the near future, can be extended to multi-volcano database systems. The impact of this work is significant in the evaluation of hazard and risk by monitoring the dynamic evolution of volcanic centers, which is crucial for understanding the stages in a volcano’s eruptive cycle.

Funder

Fondo de Fomento al Desarrollo Científico y Tecnológico

Fondo de Innovación para la Competitividad

Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3