Hidden semi-Markov Model based earthquake classification system using Weighted Finite-State Transducers

Author:

Beyreuther M.,Wassermann J.

Abstract

Abstract. Automatic earthquake detection and classification is required for efficient analysis of large seismic datasets. Such techniques are particularly important now because access to measures of ground motion is nearly unlimited and the target waveforms (earthquakes) are often hard to detect and classify. Here, we propose to use models from speech synthesis which extend the double stochastic models from speech recognition by integrating a more realistic duration of the target waveforms. The method, which has general applicability, is applied to earthquake detection and classification. First, we generate characteristic functions from the time-series. The Hidden semi-Markov Models are estimated from the characteristic functions and Weighted Finite-State Transducers are constructed for the classification. We test our scheme on one month of continuous seismic data, which corresponds to 370 151 classifications, showing that incorporating the time dependency explicitly in the models significantly improves the results compared to Hidden Markov Models.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An end-to-end DNN-HMM based system with duration modeling for robust earthquake detection;Computers & Geosciences;2023-10

2. Multi-station automatic classification of seismic signatures from the Lascar volcano database;Natural Hazards and Earth System Sciences;2023-03-03

3. Machine Learning in Volcanology: A Review;Updates in Volcanology - Transdisciplinary Nature of Volcano Science;2021-06-09

4. Research on Seismic Signal Classification and Recognition Based on EEMD and CNN;2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE);2020-12-14

5. Classification of Isolated Volcano-Seismic Events Based on Inductive Transfer Learning;IEEE Geoscience and Remote Sensing Letters;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3