Author:
Hashemi-Beni L.,Gebrehiwot A.
Abstract
Abstract. This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-8s model achieved 75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献