Satellite Video Remote Sensing for Flood Model Validation

Author:

Masafu Christopher1ORCID,Williams Richard1ORCID

Affiliation:

1. School of Geographical and Earth Sciences University of Glasgow Glasgow UK

Abstract

AbstractSatellite‐based optical video sensors are poised as the next frontier in remote sensing. Satellite video offers the unique advantage of capturing the transient dynamics of floods with the potential to supply hitherto unavailable data for the assessment of hydraulic models. A prerequisite for the successful application of hydraulic models is their proper calibration and validation. In this investigation, we validate 2D flood model predictions using satellite video‐derived flood extents and velocities. Hydraulic simulations of a flood event with a 5‐year return period (discharge of 722 m3 s−1) were conducted using Hydrologic Engineering Center—River Analysis System 2D in the Darling River at Tilpa, Australia. To extract flood extents from satellite video of the studied flood event, we use a hybrid transformer‐encoder, convolutional neural network (CNN)‐decoder deep neural network. We evaluate the influence of test‐time augmentation (TTA)—the application of transformations on test satellite video image ensembles, during deep neural network inference. We employ Large Scale Particle Image Velocimetry (LSPIV) for non‐contact‐based river surface velocity estimation from sequential satellite video frames. When validating hydraulic model simulations using deep neural network segmented flood extents, critical success index peaked at 94% with an average relative improvement of 9.5% when TTA was implemented. We show that TTA offers significant value in deep neural network‐based image segmentation, compensating for aleatoric uncertainties. The correlations between model predictions and LSPIV velocities were reasonable and averaged 0.78. Overall, our investigation demonstrates the potential of optical space‐based video sensors for validating flood models and studying flood dynamics.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3