PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY

Author:

Johansen K.ORCID,Morton M. J. L.,Malbeteau Y.,Aragon B.ORCID,Al-Mashharawi S.,Ziliani M.,Angel Y.,Fiene G.,Negrao S.,Mousa M. A. A.,Tester M. A.,McCabe M. F.ORCID

Abstract

Abstract. Biomass and yield are important variables used for assessing agricultural production. However, these variables are difficult to estimate for individual plants at the farm scale and may be affected by abiotic stressors such as salinity. In this study, the wild tomato species, Solanum pimpinellifolium, was evaluated through field and UAV-based assessment of 600 control and 600 salt-treated plants. The aim of this research was to determine, if UAV-based imagery, collected one, two, four, six, seven and eight weeks before harvest could predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest and if predictions varied for control and salt-treated plants. A Random Forest approach was used to model biomass and yield. The results showed that shape features such as plant area, border length, width and length had the highest importance in the random forest models. A week prior to harvest, the explained variance of fresh shoot mass, number of fruits and yield mass were 86.60%, 59.46% and 61.09%, respectively. The explained variance was reduced as a function of time to harvest. Separate models may be required for predicting yield of salt-stressed plants, whereas the prediction of yield for control plants was less affected if the model included salt-stressed plants. This research demonstrates that it is possible to predict biomass and yield of tomato plants up to four weeks prior to harvest, and potentially earlier in the absence of severe weather events.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3