Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery Using Multiple Machine Learning Methods

Author:

Zheng CaiwangORCID,Abd-Elrahman AmrORCID,Whitaker Vance,Dalid Cheryl

Abstract

Biomass is a key biophysical parameter for precision agriculture and plant breeding. Fast, accurate and non-destructive monitoring of biomass enables various applications related to crop growth. In this paper, strawberry dry biomass weight was modeled using 4 canopy geometric parameters (area, average height, volume, standard deviation of height) and 25 spectral variables (5 band original reflectance values and 20 vegetation indices (VIs)) extracted from the Unmanned Aerial Vehicle (UAV) multispectral imagery. Six regression techniques—multiple linear regression (MLR), random forest (RF), support vector machine (SVM), multivariate adaptive regression splines (MARS), eXtreme Gradient Boosting (XGBoost) and artificial neural network (ANN)—were employed and evaluated for biomass prediction. The ANN had the highest accuracy in a five-fold cross-validation, with R2 of 0.89~0.93, RMSE of 7.16~8.98 g and MAE of 5.06~6.29 g. As for the other five models, the addition of VIs increased the R2 from 0.77~0.80 to 0.83~0.86, and reduced the RMSE from 8.89~9.58 to 7.35~8.09 g and the MAE from 6.30~6.70 to 5.25~5.47 g, respectively. Red-edge-related VIs, including the normalized difference red-edge index (NDRE), simple ratio vegetation index red-edge (SRRedEdge), modified simple ratio red-edge (MSRRedEdge) and chlorophyll index red and red-edge (CIred&RE), were the most influential VIs for biomass modeling. In conclusion, the combination of canopy geometric parameters and VIs obtained from the UAV imagery was effective for strawberry dry biomass estimation using machine learning models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3