LASER-VISUAL-INERTIAL ODOMETRY BASED SOLUTION FOR 3D HERITAGE MODELING: THE SANCTUARY OF THE BLESSED VIRGIN OF TROMPONE

Author:

Bronzino G. P. C.,Grasso N.ORCID,Matrone F.,Osello A.,Piras M.ORCID

Abstract

<p><strong>Abstract.</strong> The advent of new mobile mapping systems that integrate different sensors has made it easier to acquire multiple 3D information with high speed. Today, technological development has allowed the creation of portable systems particularly suitable for indoor surveys, which mainly integrating LiDAR devices, chambers and inertial platforms, make it possible to create in a fast and easy way, full 3D model of the environment. However, the performance of these instruments differs depending on the acquisition context (indoor and outdoor), the characteristics of the scene (for example lighting, the presence of objects and people, reflecting surfaces, textures) and, above all, the mapping and localization algorithms implemented in devices. The purpose of this study is to analyse the results, and their accuracy, deriving from a survey conducted with the KAARTA Stencil 2 handheld system. This instrument, composed of a 3D LiDAR Velodyne VLP-16, a MEMS inertial platform and a feature tracker camera, it is able to realize the temporal 3D map of the environment. Specifically, the acquisition tests were carried out in a context of metrical documentation of an architectural heritage, in order extract architectural detail for the future reconstruction of virtual and augmented reality environments and for Historical Building Information Modeling purposes. The achieved results were analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested in the church and cloister of the Sanctuary of the Beata Vergine del Trompone in Moncrivello (VC) (Italy).</p>

Publisher

Copernicus GmbH

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3