SHAPE PRESERVING NOISE ATTENUATION MODEL FOR 3-D-MODELING OF HERITAGE SITES BY PORTABLE LASER SCANS

Author:

Zhang T.,Abu-Hani J.,Filin S.

Abstract

Abstract. The development of efficient strategies to document cultural heritage sites is an active research field. One promising avenue to address that need may be found in the use of portable laser scanners. Such scans provide a mapping-grade level of accuracy, yet their level of characterization is limited by the low resolution of the generated point cloud and by the relatively noisy measurements. In this paper we study methods to attenuate the noisy responses as a means to improve the data quality and highlight the underlying structure. Unlike the prevailing plane-fitting-based filtering approaches that tend to blur salient features, we consider the use of local structure properties in our denoising strategy. We use the normal-based bilateral filtering of point clouds as a platform, yet introduce new normal preservation concepts whose incorporation significantly improves the overall denoising process performance. Results demonstrate how our proposed solution outperforms the standard plane-filtering and the naive bilateral approach. The attenuation we achieve yields a more visually pleasing entity description as well as simplified processing of subsequent procedures, including feature extraction and semantic segmentation.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3