Abstract
Abstract. Obtaining accurate 3D descriptions in the thermal infrared (TIR) is a quite challenging task due to the low geometric resolutions of TIR cameras and the low number of strong features in TIR images. Combining the radiometric information of the thermal infrared with 3D data from another sensor is able to overcome most of the limitations in the 3D geometric accuracy. In case of dynamic scenes with moving objects or a moving sensor system, a combination with RGB cameras and profile laserscanners is suitable. As a laserscanner is an active sensor in the visible red or near infrared (NIR) and the thermal infrared camera captures the radiation emitted by the objects in the observed scene, the combination of these two sensors for close range applications are independent from external illumination or textures in the scene. This contribution focusses on the fusion of point clouds from terrestrial laserscanners and RGB cameras with images from thermal infrared mounted together on a robot for indoor 3D reconstruction. The system is geometrical calibrated including the lever arm between the different sensors. As the field of view is different for the sensors, the different sensors record the same scene points not exactly at the same time. Thus, the 3D scene points of the laserscanner and the photogrammetric point cloud from the RGB camera have to be synchronized before point cloud fusion and adding the thermal channel to the 3D points.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献