Spatial Visualization Based on Geodata Fusion Using an Autonomous Unmanned Vessel

Author:

Włodarczyk-Sielicka Marta1ORCID,Połap Dawid2ORCID,Prokop Katarzyna2ORCID,Połap Karolina3ORCID,Stateczny Andrzej4ORCID

Affiliation:

1. Faculty of Navigation, Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland

2. Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

3. Marine Technology Ltd., Roszczynialskiego 4/6, 81-521 Gdynia, Poland

4. Department of Geodesy, Gdańsk University of Technology, Gabriela Narutowicza 11-12, 80-233 Gdańsk, Poland

Abstract

The visualization of riverbeds and surface facilities on the banks is crucial for systems that analyze conditions, safety, and changes in this environment. Hence, in this paper, we propose collecting, and processing data from a variety of sensors—sonar, LiDAR, multibeam echosounder (MBES), and camera—to create a visualization for further analysis. For this purpose, we took measurements from sensors installed on an autonomous, unmanned hydrographic vessel, and then proposed a data fusion mechanism, to create a visualization using modules under and above the water. A fusion contains key-point analysis on classic images and sonars, augmentation/reduction of point clouds, fitting data and mesh creation. Then, we also propose an analysis module that can be used to compare and extract information from created visualizations. The analysis module is based on artificial intelligence tools for the classification tasks, which helps in further comparison to archival data. Such a model was tested using various techniques to achieve the fastest and most accurate visualizations possible in simulation and real case studies.

Funder

National Centre for Research and Development (NCBR) of Poland

Silesian University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Wawrzyniak, N., Hyla, T., and Bodus-Olkowska, I. (2022). Vessel identification based on automatic hull inscriptions recognition. PLoS ONE, 17.

2. Geospatial Data Integration: Panacea or Nightmare?;Trigg;Int. Arch. Photogramm. Remote Sens.,1997

3. Manoj, M., Dhilip Kumar, V., Arif, M., Bulai, E.R., Bulai, P., and Geman, O. (2022). State of the art techniques for water quality monitoring systems for fish ponds using iot and underwater sensors: A review. Sensors, 22.

4. Fusion of 3D point clouds with tir images for indoor scene reconstruction;Hoegner;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2018

5. A feature extraction scheme for qualitative and quantitative analysis from hyperspectral data-data integration of hyperspectral data;Fujimura;Int. Arch. Photogramm. Remote Sens.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3