RECONSTRUCTION OF 3D ACCIDENT SCENE FROM MULTIROTOR UAV PLATFORM

Author:

Mat Amin M. A.,Abdullah S.,Abdul Mukti S. N.,Mohd Zaidi M. H. A.,Tahar K. N.ORCID

Abstract

Abstract. Traffic accidents are one of the major causes of fatality in developing countries. The aim of the study is to reconstruct accident scenes by using UAV photogrammetry. The methodology of this study is organised into four main phases which consist of preliminary work, flight planning, 3D model processing and analysis of the results. The 3D model was successfully generated by using Point of Interest (POI) flight planning. The 3D model showed that the results of the process produced good 3D texture where the two vehicles had good shapes and could be seen clearly from an oblique view. In addition, the effect of the tyres on the road could also be seen clearly and had good shape which were generated accurately. The accuracy values obtained from the POI technique and waypoint technique were 0.059m and 0.043m, respectively. Due to the availability of UAVs in the market at reasonable costs, photogrammetry offers the best alternative technique to other methods that have been used to reconstruct the accident scene.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3