MOTIF: MULTI-ORIENTATION TENSOR INDEX FEATURE DESCRIPTOR FOR SAR-OPTICAL IMAGE REGISTRATION

Author:

Yao Y.,Zhang B.,Wan Y.,Zhang Y.

Abstract

Abstract. The inherent speckle noise in synthetic aperture radar (SAR) images and the significant differences between SAR and optical images in nonlinear radiation give rise to the great difficulty in computing similarity between image features, improving detection accuracy of corresponding points and the efficiency of image matching, thus making the registration of SAR and optical images a long-standing challenging task. To address these issues, a new SAR-optical image registration method was proposed in this paper, namely, Multi-orientation Tensor Index Feature (MoTIF), which is characterized by a lightweight feature descriptor. Specifically, we firstly established a diffusion tensor model based on the information of image gradient orientation. Then, the model was parameterized using polar coordinates to help identify the MoTIF and get the array of indices of maximum value, with which we could draw a multi-orientation index map and thereupon construct the feature vector descriptors. To evaluate the proposed method, seven representative SAR-optical image pairs were tested along with a comparison with other four state-of-the-art methods. Results show that our MoTIF method outperforms the other methods in that it substantially de-speckles SAR images, overcomes nonlinear radiation distortions caused by the differences between SAR and optical images, and achieves high precision and efficiency in image registration. The average number of correct matches (NCM) of 151.0 and the root of mean-squared error (RMSE) of 1.66 pixels obtained by utilizing MoTIF with lower time consumption adds more evidence to its superior performance. The time consumption of the MoTIF method is better than that of the other four methods, and the calculation speed is 4 times faster than that of the LGHD method. Executable code and test data are published in the link https://skyearth.org/publication/project/MoTIF/

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3