Multi-Modal Image Registration Based on Phase Exponent Differences of the Gaussian Pyramid

Author:

Yan Xiaohu12ORCID,Cao Yihang3,Yang Yijun4,Yao Yongxiang3

Affiliation:

1. School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518055, China

2. Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen Polytechnic University, Shenzhen 518055, China

3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

4. School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China

Abstract

In multi-modal images (MMI), the differences in their imaging mechanisms lead to large signal-to-noise ratio differences, which means that the matching of geometric invariance and the matching accuracy of the matching algorithms often cannot be balanced. Therefore, how to weaken the signal-to-noise interference of MMI, maintain good scale and rotation invariance, and obtain high-precision matching correspondences becomes a challenge for multimodal remote sensing image matching. Based on this, a lightweight MMI alignment of the phase exponent of the differences in the Gaussian pyramid (PEDoG) is proposed, which takes into account the phase exponent differences of the Gaussian pyramid with normalized filtration, i.e., it achieves the high-precision identification of matching correspondences points while maintaining the geometric invariance of multi-modal matching. The proposed PEDoG method consists of three main parts, introducing the phase consistency model into the differential Gaussian pyramid to construct a new phase index. Then, three types of MMI (multi-temporal image, infrared–optical image, and map–optical image) are selected as the experimental datasets and compared with the advanced matching methods, and the results show that the NCM (number of correct matches) of the PEDoG method displays a minimum improvement of 3.3 times compared with the other methods, and the average RMSE (root mean square error) is 1.69 pixels, which is the lowest value among all the matching methods. Finally, the alignment results of the image are shown in the tessellated mosaic mode, which shows that the feature edges of the image are connected consistently without interlacing and artifacts. It can be seen that the proposed PEDoG method can realize high-precision alignment while taking geometric invariance into account.

Funder

National Natural Science Foundation of China

Stable Supporting Program for Universities of Shenzhen

Research Foundation of Shenzhen Polytechnic University

Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3