APPLYING RANDOM FOREST CLASSIFICATION TO MAP LAND USE/LAND COVER USING LANDSAT 8 OLI

Author:

Nguyen H. T. T.,Doan T. M.,Radeloff V.

Abstract

Abstract. This study used the Random Forest classifier (RF) running in R environment to map Land use/Land cover (LULC) of Dak Lak province in Vietnam based on the Landsat 8 OLI. The values of two RF parameters of ntree (number of tree) and mtry (the number of variables used to split at each node) were tested and compared. In current study the best results indicate the number of suitable decision trees involved in the classification process is 300 (ntree), and the suitable number of variables used to split at each node is 4 variables (mtry). These parameters were used to classify 7 bands multi-spectral resolution from 1–7 of Landsat 8 into ten classes of LULC including natural broad-leaved evergreen, semi-evergreen, dipterocarp deciduous forest, plantation forest, rubber, coffee land, crop land, barren land, residential area and water surface. The overall accuracy of 90.32 % with Kappa coefficient of 0.8434 was found in this case.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3