MACHINE LEARNING APPROACH FOR KHARIF RICE YIELD PREDICTION INTEGRATING MULTI-TEMPORAL VEGETATION INDICES AND WEATHER AND NON-WEATHER VARIABLES

Author:

Chandra A.,Mitra P.,Dubey S. K.,Ray S. S.

Abstract

Abstract. The development of kharif rice yield prediction models was attempted through Machine Learning approaches such as Artificial Neural Network and Random Forest for the 42 blocks covering 13,141 sq km upland rainfed area of Purulia and Bankura district, West Bengal. Models were developed integrating monthly NDVI with weather and non-weather variables at block-level for the period 2006 to 2015. The model correlation obtained was 0.702 with MSE 0.01. Though the weather variables vs NDVI models are quite satisfactory, NDVI vs kharif rice yield models however, show relatively less correlation, about 0.6 revealing the requirement of varied additional farmer-controlled inputs. Development of NDVI vs crop yield models for different crop growth stages or fortnightly over a larger data set with selective adding of weather and non-weather variables to NDVI would be the most appropriate.

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3