Rapid Rice Yield Estimation Using Integrated Remote Sensing and Meteorological Data and Machine Learning

Author:

Islam Md Didarul1ORCID,Di Liping1ORCID,Qamer Faisal Mueen2ORCID,Shrestha Sravan2,Guo Liying1ORCID,Lin Li1ORCID,Mayer Timothy J.34,Phalke Aparna R.34

Affiliation:

1. Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, USA

2. International Center for Integrated Mountain Development, Lalitpur 44700, Nepal

3. Earth System Science Center, The University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805, USA

4. SERVIR Science Coordination Office, NASA Marshall Space Flight Center 320 Sparkman Drive, Huntsville, AL 35805, USA

Abstract

This study developed a rapid rice yield estimation workflow and customized yield prediction model by integrating remote sensing and meteorological data with machine learning (ML). Several issues need to be addressed while developing a crop yield estimation model, including data quality issues, data processing issues, selecting a suitable machine learning model that can learn from few available time-series data, and understanding the non-linear relationship between historical crop yield and remote sensing and meteorological factors. This study applied a series of data processing techniques and a customized ML model to improve the accuracy of crop yield estimation at the district level in Nepal. It was found that remote sensing-derived NDVI product alone was not sufficient for accurate estimation of crop yield. After incorporating other meteorological variables into the ML models, estimation accuracy improved dramatically. Along with NDVI, the meteorological variables of rainfall, soil moisture, and evapotranspiration also exhibited a strong association with rice yield. This study also found that stacking multiple tree-based regression models together could achieve better accuracy than benchmark linear regression or standalone ML models. Due to the unique and distinct physio-geographical setting of each district, a variation in estimation accuracy from district to district could be observed. Our data processing and ML model workflow achieved an average of 92% accuracy of yield estimation with RMSE 328.06 kg/ha and MAE 317.21 kg/ha. This methodological workflow can be replicated in other study areas and the results can help the local authorities and stakeholders understand the factors affecting crop yields as well as estimating crop yield before harvesting season to ensure food security and sustainability.

Funder

NASA SERVIR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3