1. Ayan Das, Mukesh Kumar, Amit Kushwaha, Rucha Dave, Kailash Kamaji Dakhore, Karshan Chaudhari, & Bimal Kumar Bhattacharya. (2023). Machine learning model ensemble for predicting sugarcane yield through synergy of optical and SAR remote sensing. Remote Sensing Applications: Society and Environment, Volume 30, April 2023, 100962. https://doi.org/10.1016/j.rsase.2023.100962
2. Bhosale, A. D., Waskar, D. P., & Shinde, P. B. (2015). Performance of DSSAT model for simulating soybean yield under rainfed condition in Vertisols of central Maharashtra. International Journal of Agriculture, Environment and Biotechnology, 8(3), 604-610.
3. Chavan, K.K., Khobragade, A.M., Kadam, Y.E. and Mane, R.B. (2018) Study the heat unit requirement of soybean (Glycine max) varieties under varied weather condition at Parbhani. Journal of Pharmacognosy and Phytochemistry. 7(3): 526-530.
4. Deshmukh, S. D., Waskar, D. P., & Shinde, P. B. (2013). Application of DSSAT model for soybean yield prediction in Vertisols of western Maharashtra. International Journal of Current Microbiology and Applied Sciences, 2(8), 555-562.
5. Hoogenboom, G., C.H. Porter, K.J. Boote, V. Shelia, P.W. Wilkens, U. Singh, J.W. White, S. Asseng, J.I. Lizaso, L.P. Moreno, W. Pavan, R. Ogoshi, L.A. Hunt, G.Y. Tsuji, and J.W. Jones. (2019). The DSSAT crop modeling ecosystem. In: p.173-216 [K.J. Boote, editor] Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom. https://dx.doi.org/10.19103/AS.2019.0061.10.