AN AGENT-BASED MODELLING FOR RIDE SHARING OPTIMIZATION USING A* ALGORITHM AND CLUSTERING APPROACH

Author:

Naseri Gorgoon M.,Davoodi M.,Davoodi M.,Motieyan H.

Abstract

Abstract. Today, city management is one of the great challenges facing the world. The growth of population, industries, and services is in urgent need of transportation on a large scale. Meanwhile, transportation has great importance in urban management. Therefore, it is necessary to solve the traffic problem with scientific methods and reduce the traffic load of cities. An interesting way to reduce urban travels is using 2,3, or 4 people from one car that it is known as “Ride Sharing”. In this research, the NetLogo software is used to simulate travel sharing scenarios. The three considered parameters are the number of passengers, the acceptable travel sharing radius, and the acceptable waiting time. The proposed algorithm uses a clustering method to find the best candidates to share a ride. Several scenarios were performed to evaluate numerical results. The number of passengers was 100, and 500, the radius of the trip was 1,000 and 2,000 meters, and the waiting time was 10 and 20 minutes. So, 8 experiments were carried out. The least amount of travel sharing was observed in the first scenario (100 passengers, 1000 m travel sharing radius and 10 minutes waiting time), in which 2% of single trips dropped out. The most sharing trips were in the final scenario (500 passengers, 2000 meters radius and 20 minutes waiting time), which saw a decrease of 36.4% of single trips. So, it can be said that sharing a trip can reduce traffic in cities and consequently reduce urban costs and either air pollution or noise pollution.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3