Affiliation:
1. Electrical Engineering Department Politecnico di Milano Milan Italy
2. Department of Electrical and Computer Engineering University of Kurdistan Sanandaj Kurdistan Iran
Abstract
AbstractThis article performs a novel hardware test application on the min–max algorithm to control a two‐axis turbofan engine's fuel with a high bypass ratio. In this technique the microcontroller uses a nonlinear model based on the min–max algorithm to control the turbofan's fuel consumption. The min–max control method precisely provides the desired thrust while meeting the engine's physical and operational limitations. By setting the engine's limits appropriately, a surge is prevented from happening due to overheating of the turbine. As a proof of concept, the proposed fuel control algorithm is verified using an Intel Addison's Arduino microcontroller connected to a computer. The implemented hardware is examined by incorporating it into a typical control loop test and monitored via a computer. The achieved results indicate fast time response and algorithm flexibility in simulation modes. The test results confirm the precision and proper implementation of the proposed min–max control algorithm. In addition, the suggested min–max control algorithm can be applied to realize restrictions such as the rotational speed and the outlet pressure of the high‐pressure compressor under the required conditions.
Subject
Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献