ASSESSMENT OF COMBINING CONVOLUTIONAL NEURAL NETWORKS AND OBJECT BASED IMAGE ANALYSIS TO LAND COVER CLASSIFICATION USING SENTINEL 2 SATELLITE IMAGERY (TENES REGION, ALGERIA)

Author:

Zaabar N.,Niculescu S.,Mihoubi M. K.

Abstract

Abstract. Land cover maps can provide valuable information for various applications, such as territorial monitoring, environmental protection, urban planning and climate change prevention. In this purpose, remote sensing based on image classification approaches undergoing a high revolution can be dedicated to land cover mapping tasks. Similarly, deep learning models are considerably applied in remote sensing applications; which can automatically learn features from large amounts of data. Prevalently, the Convolutional Neural Network (CNN), have been increasingly performed in image classification. The aim of this study is to apply a new approach to analyse land cover, and extract its features. Experiments carried out on a coastal town located in north-western Algeria (Ténès region). The study area is chosen because of its importance as a part of the national strategy to combat natural hazards, specifically floods. As well as, a simple CNN model with two hidden layers was constructed, combined with an Object-Based Image Analysis (OBIA). In this regard, a Sentinel-2 image was used, to perform the classification, using spectral index combinations. Furthermore, to compare the performance of the proposed approach, an OBIA based on machines learning algorithms mainly Random Forest (RF) and Support Vector Machine (SVM), was provided. Results of accuracy assessment of classification showed good values in terms of Overall accuracy and Kappa Index, which reach to 93.1% and 0.91, respectively. As a comparison, CNN-OBIA approach outperformed OBIA based on RF algorithm. Therefore, Final land cover maps can be used as a support tool in regional and national decisions.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3