LAND USE CLASSIFICATION FROM COMBINED USE OF REMOTE SENSING AND SOCIAL SENSING DATA

Author:

Anugraha A. S.,Chu H.-J.

Abstract

Abstract. Large amounts of data can be sensed and analyzed to discover patterns of human behavior in cities for the benefit of urban authorities and citizens, especially in the areas of traffic forecasting, urban planning, and social science. In New York, USA, social sensing, remote sensing, and urban land use information support the discovery of patterns of human behavior. This research uses two types of openly accessible data, namely, social sensing data and remote sensing data. Bike and taxi data are examples of social sensing data, whereas sentinel remote sensed imagery is an example of remote sensing data. This research aims to sense and analyze the patterns of human behavior and to classify land use from the combination of remote sensing data and social sensing data. A decision tree is used for land use classification. Bike and taxi density maps are generated to show the locations of people around the city during the two peak times. On the basis of a geographic information system, the maps also reflect the residential and office areas in the city. The overall accuracy of land use classification after the consideration of social sensing data is 85.3%. The accuracy assessment shows that the combination of remote sensing data and social sensing data facilitates accurate urban land use classification.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3