Social Sensing for Urban Land Use Identification

Author:

Anugraha AdindhaORCID,Chu Hone-JayORCID,Ali Muhammad

Abstract

The utilization of urban land use maps can reveal the patterns of human behavior through the extraction of the socioeconomic and demographic characteristics of urban land use. Remote sensing that holds detailed and abundant information on spectral, textual, contextual, and spatial configurations is crucial to obtaining land use maps that reveal changes in the urban environment. However, social sensing is essential to revealing the socioeconomic and demographic characteristics of urban land use. This data mining approach is related to data cleaning/outlier removal and machine learning, and is used to achieve land use classification from remote and social sensing data. In bicycle and taxi density maps, the daytime destination and nighttime origin density reflects work-related land uses, including commercial and industrial areas. By contrast, the nighttime destination and daytime origin density pattern captures the pattern of residential areas. The accuracy assessment of land use classified maps shows that the integration of remote and social sensing, using the decision tree and random forest methods, yields accuracies of 83% and 86%, respectively. Thus, this approach facilitates an accurate urban land use classification. Urban land use identification can aid policy makers in linking human activities to the socioeconomic consequences of different urban land uses.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3