GEOMATIC 3D MODELING OF A STATUE (ALSO) FOR STRUCTURAL ANALYSIS AND RISK EVALUATION: THE EXAMPLE OF SAN GIOVANNINO MARTELLI IN FLORENCE

Author:

Spangher A.,Visintini D.,Tucci G.,Bonora V.

Abstract

Abstract. This work has been developed among the researches of a PhD thesis in Civil and Environmental Engineering and Architecture of the University of Udine in cooperation with the GECO Laboratory of the University of Florence. It focuses on the interaction between Geomatics and Structural Analysis, both applied to cultural heritage, and expressly to artefacts and structures in stone materials, like the case study of this paper, the marble statue called “San Giovannino Martelli” (Saint John the Baptist) conserved in Florence. At the beginning, some interesting examples of surveying and structural analyses on statues are reported, in order to remind the complementary tasks and requirements of geomatics and structural analysis. Current laser scanning systems can accurately survey the geometry of a statue or any cultural heritage artefact, essential to understand their structural behaviour and resilience capability. Afterwards, following the few Italian regulations in this field, the possible risks of museum goods are described: topics of this part are more familiar for structural engineers as object classification, seismic reactions, damage mechanisms, possible movements (adherent, slipping and oscillation), dynamic domains, anyway necessary steps to evaluate the risk and so to define eventual interventions. The artistic description of the statue, its debated attribution to Donatello or/and to Desiderio da Settignano and its history is later recalled, remembering that the surveying has been done for the idea to 3D print a replica and to place it in the original place. Having used a close range laser scanner, the obtained 3D model has an impressive geometrical Level of Detail (LoD), whose geometric features are explained in the paper, underlying that such extremely detailed mesh is directly given as output from the laser scanner software. The model simplifications by four decimation are therefore explained and also changes to geometry, like shifts on centre of the mass or barycentre with respect to the original one, are evaluated: since these are pretty null, all the models can be used for structural analysis. Software Scan-and-Solve, a Rhinoceros plug-in, has been employed for Finite Elements Method (FEM) analysis, considering the sole weight and also a horizontal force, as a seismic event or an accidental push, that can synthesize the possible statue risks. The force intensity and geometry have been computed considering the resistance to the overturning for the adherence among statue and pedestal. The more numerically accurate results has been obtained with the more simplified model, having only 7% of initial triangles, since this situation better exploits the computational resources for solver precision and for congruent geometrical LoD and FEM resolution.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3