Performing low-altitude photogrammetric surveys, a comparative analysis of user-grade unmanned aircraft systems

Author:

Mugnai FrancescoORCID,Longinotti Pietro,Vezzosi Francesco,Tucci Grazia

Abstract

AbstractThis paper shows results of comparing performances of four unmanned aircraft systems (UAS) in terms of photogrammetric survey’s quality. This study aims to investigate what is the more suitable UAS for specific applications considering the required scale factor, such as for architectural, environmental, and restoration purposes. A series of photogrammetric surveys were conducted in a hilly area of about 5 ha using Phantom 4 Adv, Mavic 2 Pro, Mavic Air 2, and Mavic Mini 2. These unmanned aircrafts are commercial user–grade systems used mainly by private professionals. Several photogrammetric reconstructions were performed by varying essential parameters, such as flight altitude and cameras of remotely piloted aircraft systems (RPAS), applying structure-from-motion (SfM) algorithms to the images taken from the UAS. The surveys’ quality was analyzed by comparing the ground targets’ coordinates extrapolated from the point clouds to those measured on the field with indirect georeferencing through GNSS technology. Fifty targets were installed and arranged following a reasonably regular mesh. The boundary conditions were maintained the same for each flight mission, flight trajectories, and the ground control point distribution on the ground. For each survey made by each of the four UAS, altimetric and planimetric residuals were reported and compared. Average residuals from Phantom 4 Adv, about 15 mm, almost disappear compared to the other UASs; the discrepancy is one order of magnitude. With a regular grid geometry of ground targets, the Mavic Mini 2 led to an error average of about 5 cm. Remembering that the Mavic Mini 2 is an ultralight drone (does not require a pilot's license), it could significantly reduce cost compared to the other systems.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3